Vertical convection regimes in a rectangular cavity: Prandtl and aspect ratio dependence

Arman Khoubani, Ashwin Vishnu Mohanan*, Pierre Augier, Jan-Bert Flór

LEGI, Grenoble Alpes University
*SMHI

Journées Convection Naturelle, Orsay, July 3, 2023
Introduction: 2D Differentially Heated Cavity (DHC)

History

- Ghelfgat (1999, 2017, 2020ab)
- Wang et al. (2021) [group of Lohse]
- ... etc.

Mainly Prandtl numbers 0.7 and 7
Introduction: 2D Differentially Heated Cavity (DHC)

Control parameters

Aspect ratio, $A = \frac{H}{W}$
Prandtl number, $Pr = \frac{\nu}{\alpha}$
Rayleigh number, $Ra = g \beta \Delta T H^3 / \nu \alpha$
Transient and steady state at small Ra

- Starting from rest with uniform temperature
- Switching on thermal forcing
- Steady state:
 - Detached top/bottom plumes
 - Stable stratification in the interior
Instability of steady state at \(Ra > Ra_c \)

\[(x,z) = (0.1,0.1), A = 1.0, Pr = 0.71, Ra = 1.85 \times 10^8 \]

- Exponential growth, linear instability
- Non-linear saturation

Our study

- Linear stability of steady state for \(0.5 \leq A \leq 2.0 \) and \(0.1 \leq Pr \leq 4.0 \)
- \(Ra_c(Pr,A) \), shape of the leading mode
Numerical method

Nek5000

- Spectral Element code
- DNS/LES/RANS

Snek5000, Snek5000-cbox

- A Python package and a thin interface over Nek5000
- https://github.com/snek5000/snek5000-cbox
- Different kind of simulations
 - Non-linear
 - Linear
- Base state with Selective Frequency Damping (SFD)
Our procedure for each A and Pr

1. Non-linear simulations
 Estimate Ra_c

2. Non-linear simulations with Selective Frequency Damping (SFD)
 3 base states at $3 \, Ra > Ra_c$

3. Linear simulations
 3 growth rates (σ) \Rightarrow exact Ra_c

4. Decompose the leading linear mode (Hilbert transform)

\[
\theta'(x, z, t) = A_\theta(x, z) \cos(\omega t + \Phi_\theta(x, z)) e^{\sigma t}
\]
Base states from NL simulations (SFD): $A = 2.0$, effect of Pr

- Stable stratification \Rightarrow Brunt-Väisälä frequency, $N_c = \sqrt{-\frac{g}{\rho_0} \frac{\partial \rho}{\partial z}}$
- Mean flow changes a lot with Pr:
 - Large scale circulation
 - Plume detachment
Base states from NL simulations (SFD): $Pr = 0.35$, effect of A

- Variation of \((\text{length of meandering}) / (\text{cavity width})\)
- $\uparrow A \equiv \downarrow Pr$. Increasing A is equivalent to decreasing Pr.
Diagnostics

Definitions

- ω: frequency of perturbation
- Brunt-Väisälä frequency:
 \[N_c = \sqrt{-\frac{g}{\rho_0} \frac{\partial \rho}{\partial z}} \]

Internal waves

- $\omega / N_c > 1 \Rightarrow$ no internal waves (fast)
- $\omega / N_c < 1 \Rightarrow$ internal waves (slow)
Oscillation frequency ω/N_c vs Pr

Internal waves
- $\omega/N_c > 1 \Rightarrow$ no internal waves (fast)
- $\omega/N_c < 1 \Rightarrow$ internal waves (slow)

Strong variation with Pr and A
- "Slow" and "fast" oscillations
- Sharp decrease for $Pr \simeq 0.65$
Oscillation frequency ω/N_c vs Pr and A

\Rightarrow different regimes in (A, Pr) space

next slides: different results for $A = 1.0$
Regime FCC (Fast Cell Circulation), $A = 1.0$, $Pr = 0.1$, $\omega/N_c = 2.1$

- Fast ($\omega > N_c$)
- Large cell circulation
- Maximum where hot plume meets cold boundary layer
Regime SCC (Slow Circulation Cells), $A = 1.0, Pr = 0.35, \omega/N_c = 0.83$

- Slow ($\omega < N_c$)
- Maximum at detached plume
- Internal waves in the interior
- Global symmetric mode
Regime FACo (Fast Asymmetric Corner), $A = 1.0$, $Pr = 0.53$, $\omega/N_c = 3.4$

- Fast ($\omega > N_c$)
- Maximum at corner (boundary layer)
- Asymmetric
- No coupling between active regions
Regime SSCo (Slow Symmetric Corner), $A = 1.0$, $Pr = 0.71$, $\omega/N_c = 0.35$

- Slow ($\omega < N_c$)
- Maximum at detached plume
- Coupling through internal waves
- Symmetric global mode
Regime FSP (Fast Symmetric Plume), $A = 1.0$, $Pr = 2.8$, $\omega/N_c = 1.3$

- Fast ($\omega > N_c$)
- Maximum at detached plume
- Temperature gradients larger at top and bottom
- Internal waves at top and bottom
- Symmetric global mode
Regime FAP (Fast Asymmetric Plume), $A = 1.0$, $Pr = 4.0$, $\omega/N_c = 1.7$

- Fast ($\omega > N_c$) \Rightarrow no internal waves
- No coupling between active regions
- Asymmetric mode
6 different regimes

- Different geometries of base state
- Fast or slow (with waves)
- Global (symmetric) or uncoupled local modes (asymmetric)
New instability conditions

\[Pr \leq 1.0 \Rightarrow Re > Re_c \simeq 10^4 \]

\[Pr > 1.0 \Rightarrow RePr^2 > \simeq 10^4 \]
Conclusions and perspectives

Conclusions

▶ Rich regime diagram in \((A, \ Pr)\) space
▶ Importance of internal waves for symmetry
▶ Global modes (symmetric) or local modes (asymmetric) in different regimes
▶ New criteria for unsteadiness

Perspectives

▶ Physical mechanism of individual regimes
▶ Shear or buoyancy?