Convection naturelle à très hauts Rayleigh ($Ra \sim 10^{15}$): simulations LES et expériences en 4He cryogénique pour la validation des corrélations d'échange pour le refroidissement passif des SMR

Songzhi Yang1, Alain Girard2, Nicolas Luchier2, Ulrich Bieder1, Etienne Studer1, Davide Duri2

1Univ. Paris-Saclay, CEA, Service de Thermo hydraulique et de Mécanique des Fluides, F-91191 Gif-sur-Yvette, France
2Univ. Grenoble Alpes, CEA, IRIG, Département des Systèmes Basses Températures, 17 Rue des Martyrs, F-38054 Grenoble, Cedex, France.
The passive safety concept of Small Modular Reactors (SMR) is based on the transfer of residual heat from the reactor to a water pool.

Heat exchange occurs by natural convection at Rayleigh numbers (Ra^*) between 10^{10} and 10^{18}.

Reliable heat transfer correlations exist to date only up to about $Ra^* < 10^{14}$ with very high uncertainties in the extrapolation to higher Ra.

$Ra^* = \frac{g \beta_f Pr_f \phi L_c^4}{\nu_f^2 \lambda_f} = Ra \cdot Nu$

$Ra^* < 10^{11} \rightarrow$ laminar flow

$Ra^* > 10^{14} \rightarrow$ turbulent flow

→ Understanding the heat transfer at very high Ra^* is of fundamental and practical interest.
The challenges:

1. Numerical challenges: @CEA Saclay
 - Validation of a CFD model for turbulent heat transfer at high Ra number.
 - Extremely high calculation cost, this necessitates a robust and efficient solver.

2. Experimental challenges: @CEA Grenoble
 - Potential alternative strategy needs to be addressed to validate the TrioCFD code avoiding a huge dimension experiment (the water pool used for cooling the SMR is decametric in size).
 - Development of validation cryogenic experiments with helium at CEA Grenoble

The CORAYSE project:
- To develop and validate a strategy to predict the heat transfer at very high Ra by using the CFD code TrioCFD.
- To design a cryogenic helium experiment
Numerical simulations – water

Validation in water (exp. data from G.C.Vliet, 1969; Fujii, 1970; Tsuji & Kajitani 2009)

The heat transfer relation are in good agreement with available experimental data.

\[\theta_w: \ T_{\text{wall}} - T_{\text{bulk}} \]

Numerical simulations – water (2)

Mean temperature

- θ_w: $T_{wall} - T_{bulk}$, θ: $T - T_{bulk}$
- δ_h: enthalpy thickness, $\delta_h = \int_0^\infty \frac{\theta}{\theta_w} dx$

Mean velocity

- δ_d: displacement thickness, $\delta_d = \int_0^\infty \frac{u}{U_m} dx$
- U_m: maximum mean velocity
Numerical simulations – water @ Ra* 10^{19}

- SMR-representative geometry
- Incompressible model

A good agreement:
- in the laminar regime at $y < 0.45$ m ($Ra^* < 10^{13}$) for θ_w along the heated wall.
- linear trend in the fully developed turbulent regime at $10^{15} < Ra^* < 10^{19}$ (1.2 m < y < 15 m),
- a new correlation with higher power exponent is proposed for $2 \cdot 10^{16} < Ra^* < 10^{19} \rightarrow$ validation needs

S. Yang, U. Bieder, LES of Natural Convection along the Vertical Wall applied for the scale of Small Modular Reactor (Ra*=10^{19}), Advancement in Thermal hydraulics, 2022.
Use of cryogenic helium

Interest in using cryogenic helium

- \((\beta_f Pr_f / \nu_f^2)\) liquid water \(\approx 10^9\)
- \((\beta_f Pr_f / \nu_f^2)\) cryogenic helium \(\approx 10^{16}\)

Liquid He allows to reduce:

- The size by a factor \(~20\),
- The power by a factor \(~10,000\)

Refrigeration station @DSBT

- 800W @4.5 K
- 30 g/s
- Subcooled bath pumping

\[R_a = g \beta_f Pr_f \frac{\Delta T L_c^3}{\nu_f^2} \]

Figures: (a) 400W refrigeration cold box, (b) cryoline, (c) multi-test cryostat
Numerical simulations – cryogenic 4He

- Bulk temperature 4.2 K. ΔT 0.6 K for Boussinesq hyp.

- Comparison:
 - Transitional Ra (no trigger is used)
 - Nu due to Pr (Air 0.7, sHe 5.7, our work 0.87)
 - Assessment of the boundary layer thickness \rightarrow sensor positioning \sim 1 µm

- Further work is necessary to consolidate the analysis (i.e. Q_w=const.) and the experimental validation is considered as paramount

Songzhi Yang, Alain Girard, Nicolas Luchier, Ulrich Bieder, Etienne Studer, 3D LES of natural convection in the side-heated vertical wall with cryogenic Helium up to $Ra=10^{15}$, 17th international heat transfer conference, 2023
4He cryogenic experiment

- **Cryogenic 4He:**
 4,2 K & 2,4 bar

- **Liquid helium bath:**
 3,6 K (from SHREK)

- **Test vessel:**
 diam. 780 mm aluminum alloy 5083

- **Cu heated plate:**
 900 x 200 x 30 mm

- **Injected power (estimated):** ~100 W

- Possibility of a heated cylinder instead (2D axisymmetric) or any shape

![Diagram of complete assembly](image)

Complete assembly

Helium bath @3,6 K

![Diagram of vertical heated plate](image)

Vertical heated plate

![Diagram of CG centering system](image)

CG centering system
Sensors

Objective for velocity sensors: microfabricated cold wires for TOF measurement

Legacy sensors @DSBT:
- Hot wires used at low temperature are of Wollaston type (JP Moro/DES–STMF process)
- Microfabricated hot wires were also developed at DSBT (Princeton process), work at room temperature, but are not reliable for cryogenic operation.

New sensor & new process:
- Thin film of NbN (PVD@PTA), possibly on Invar
- TOF sensor: Length of the sensor: 50–100 µm; thickness: 500 nm. Masks under development.
- Thin BL (~1 cm) → positioning ~ µm in a 500 mm cell

Left: Legacy DSBT hotwires (JP Moro). Right: Princeton type

Left: new DSBT TOF sensor (ongoing). Right: NbN thin film resistivity
Conclusions and further developments

Interests: Very high Ra natural convection flow is critical for SMR safety applications & fundamental research purposes

Status:

• **Simulations:** further analysis is required in cryo He
• **Experiment:** ongoing development (sizing, manufacturing plans). Procurement started
• **Sensors:** ongoing development. A real challenge!

Further developments & timeline

• **2024:** go-ahead with the cryogenic experiment
• **2025:** experiment troubleshooting & 1st runs
• Broad scientific collaboration: why don’t you join us?

Thanks also to: J-P Moro, J-M Poncet, R. Nop, F. Bancel, E. Bouleau, ...
Thanks for your attention

Any question?